What is Data Cleaning in Data Science?

Previous Topic Next Topic
 
classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

What is Data Cleaning in Data Science?

syevale111
What is Data Cleaning in Data Science?
πŸ“Œ Introduction
Data Cleaning (or Data Preprocessing) is the process of detecting, correcting, or removing inaccurate, incomplete, or irrelevant data from datasets. It is a crucial step in data science and machine learning, as poor-quality data can lead to incorrect insights and inaccurate predictions. Data Science Course in Pune


πŸ’‘ Fact: 80% of a data scientist’s time is spent cleaning and preparing data!

πŸ› οΈ Why is Data Cleaning Important?
πŸ”Ή Improves Data Accuracy – Reduces errors and inconsistencies
πŸ”Ή Enhances Model Performance – Clean data leads to better predictions
πŸ”Ή Prevents Bias – Eliminates duplicate or misleading records
πŸ”Ή Ensures Data Consistency – Standardizes formats and missing values

πŸ“Œ Example:
Imagine a company analyzing customer transactions. If the dataset contains missing prices, incorrect dates, or duplicate entries, the sales analysis will be flawed.

πŸ” Key Steps in Data Cleaning
1️⃣ Handling Missing Data
βœ… Techniques to fill missing values:

Drop missing values (if the dataset is large)
Fill with mean/median/mode (for numerical data)
Use forward or backward fill (for time-series data)
πŸ“Œ Example in Python:

python
Copy
Edit
import pandas as pd  
df.fillna(df.mean(), inplace=True)  # Fill missing values with mean  
2️⃣ Removing Duplicates
βœ… Duplicates can skew analysis and lead to incorrect conclusions.
πŸ“Œ Example in Python:
Data Science Classes in Pune


python
Copy
Edit
df.drop_duplicates(inplace=True)  
3️⃣ Standardizing Data Formats
βœ… Ensure uniform formats for:

Date formats (YYYY-MM-DD vs. MM/DD/YYYY)
Text cases (uppercase/lowercase)
Units of measurement (e.g., km vs. miles)
πŸ“Œ Example in Python:

python
Copy
Edit
df['date_column'] = pd.to_datetime(df['date_column'])  # Standardize date format
df['name'] = df['name'].str.lower()  # Convert text to lowercase
4️⃣ Handling Outliers
βœ… Outliers can distort analysis and affect ML models.
πŸ”Ή Techniques:

Remove extreme values using IQR (Interquartile Range)
Use log transformations to normalize skewed data
πŸ“Œ Example in Python:

python
Copy
Edit
Q1 = df['column'].quantile(0.25)  
Q3 = df['column'].quantile(0.75)  
IQR = Q3 - Q1  
df = df[(df['column'] >= (Q1 - 1.5 * IQR)) & (df['column'] <= (Q3 + 1.5 * IQR))]  
5️⃣ Correcting Data Entry Errors
βœ… Common issues:

Typos (e.g., "USA" vs. "U.S.A")
Inconsistent naming ("Male" vs. "M")
Incorrect spellings
πŸ“Œ Example in Python:
Data Science Training in Pune


python
Copy
Edit
df['country'] = df['country'].replace({'U.S.A': 'USA', 'United States': 'USA'})